Главная
Новости
Строительство
Ремонт
Дизайн и интерьер

















Яндекс.Метрика





Теорема Эрдёша — Секереша

Теорема Эрдёша — Секереша в комбинаторике — утверждение, уточняющее одно из следствий теоремы Рамсея для финитного случая. В то время как теорема Рамсея облегчает доказательство того, что каждая последовательность разных действительных чисел содержит монотонно возрастающую бесконечную подпоследовательность или монотонно убывающую бесконечную подпоследовательность, результат, доказанный Палом Эрдёшем и Дьёрдем Секерешем, идёт дальше. Для данных r, s они показали, что любая последовательность разных чисел длины не менее (r-1)(s-1)+1 содержит монотонно возрастающую подпоследовательность длины r или монотонно убывающую длины s. Доказательство появилось в той же самой работе 1935 года, что и задача со счастливым концом.

Пример

Для r=3 и s=2, формула говорит, что любая перестановка трёх чисел имеет возрастающую подпоследовательность длиной три или убывающую подпоследовательность длиной два. Из шести перестановок чисел 1,2,3:

  • 1,2,3 имеет возрастающую подпоследовательность длиной три
  • 1,3,2 имеет убывающую подпоследовательность 3,2
  • 2,1,3 имеет убывающую подпоследовательность 2,1
  • 2,3,1 имеет две убывающие подпоследовательности: 2,1 и 3,1
  • 3,1,2 имеет две убывающие подпоследовательности: 3,1 и 3,2
  • 3,2,1 имеет три убывающие подпоследовательности длины 2: 3,2, 3,1, и 2,1.

Геометрическая интерпретация

Позиции чисел в последовательности можно интерпретировать как x-координаты точек в евклидовой плоскости, а сами числа как y-координаты; с другой стороны, для любого множества точек на плоскости их y-координаты, упорядоченные по их x-координатам, образуют последовательность чисел (если только два числа не имеют двух одинаковых x-координат). При такой связи между последовательностями и множествами точек теорему Эрдёша — Секереша можно интерпретировать как утверждение, что для любого множества из rs + 1 или более точек найдётся ломаная из r положительно наклоненных отрезков или из s отрезков с отрицательным наклоном. Например, при r = s = 4 любое множество из 17 или более точек имеет цепь из четырёх рёбер, в котором все наклоны имеют одинаковый знак.

Доказательство

Теорема Эрдёша — Секереша может быть доказана несколькими разными способами; Майкл Стил дает обзор шести разных доказательств теоремы, в том числе с использованием принципа Дирихле и теоремы Дилуорса. Прочие способы доказательства, приводимые Стилом, включают оригинальное доказательство Эрдёша и Секереша и доказательство Блэквелла, Ловаса и самого Стила.Доказательство также есть в книге.

Принцип Дирихле

В последовательности длины (r − 1)(s − 1) + 1 пометим каждое число ni парой (ai,bi), где ai - длина наибольшей монотонно возрастающей подпоследовательности, заканчивающейся на ni, bi длина наибольшей монотонно убывающей подпоследовательности, заканчивающейся на ni. Все числа в последовательности помечены различными парами: если i < j и ninj, то ai < aj; если ninj, то bi < bj. Но есть всего (r − 1)(s − 1) возможных пар, если ai не больше r − 1, а bi не больше s − 1, так что по принципу Дирихле существует i, для которого ai или bi выходит за пределы этого ограничения. Если ai выходит за пределы, то ni - часть возрастающей подпоследовательности длины не меньше r, если bi выходит за пределы, то ni - часть убывающей подпоследовательности длины не меньше s.

Теорема Дилуорса